Calibrate Multiple Consumer RGB-D Cameras for Low-Cost and Efficient 3D Indoor Mapping

نویسندگان

  • Chi Chen
  • Bisheng Yang
  • Shuang Song
  • Mao Tian
  • Jianping Li
  • Wenxia Dai
  • Lina Fang
چکیده

Traditional indoor laser scanning trolley/backpacks with multi-laser scanner, panorama cameras, and an inertial measurement unit (IMU) installed are a popular solution to the 3D indoor mapping problem. However, the cost of those mapping suits is quite expensive, and can hardly be replicated by consumer electronic components. The consumer RGB-Depth (RGB-D) camera (e.g., Kinect V2) is a low-cost option for gathering 3D point clouds. However, because of the narrow field of view (FOV), its collection efficiency and data coverages are lower than that of laser scanners. Additionally, the limited FOV leads to an increase of the scanning workload, data processing burden, and risk of visual odometry (VO)/simultaneous localization and mapping (SLAM) failure. To find an efficient and low-cost way to collect 3D point clouds data with auxiliary information (i.e., color) for indoor mapping, in this paper we present a prototype indoor mapping solution that is built upon the calibration of multiple RGB-D sensors to construct an array with large FOV. Three time-of-flight (ToF)-based Kinect V2 RGB-D cameras are mounted on a rig with different view directions in order to form a large field of view. The three RGB-D data streams are synchronized and gathered by the OpenKinect driver. The intrinsic calibration that involves the geometry and depth calibration of single RGB-D cameras are solved by homography-based method and ray correction followed by range biases correction based on pixel-wise spline line functions, respectively. The extrinsic calibration is achieved through a coarse-to-fine scheme that solves the initial exterior orientation parameters (EoPs) from sparse control markers and further refines the initial value by an iterative closest point (ICP) variant minimizing the distance between the RGB-D point clouds and the referenced laser point clouds. The effectiveness and accuracy of the proposed prototype and calibration method are evaluated by comparing the point clouds derived from the prototype with ground truth data collected by a terrestrial laser scanner (TLS). The overall analysis of the results shows that the proposed method achieves the seamless integration of multiple point clouds from three Kinect V2 cameras collected at 30 frames per second, resulting in low-cost, efficient, and high-coverage 3D color point cloud collection for indoor mapping applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Consumer-grade Depth Cameras in Mobile Robot Navigation

Simultaneous Localization And Mapping (SLAM) stands as one of the core techniques used by robots for autonomous navigation. Cameras combining Red-Green-Blue (RGB) color information and depth (D) information are called RGB-D cameras or depth cameras. RGB-D cameras can provide rich information for indoor mobile robot navigation. Microsoft’s Kinect device, a representative low cost RGB-D camera pr...

متن کامل

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments

RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth information. RGB-D cameras rely on either structured light patterns combined with stereo sensing [6,10] or time-of-flight laser sensing [1] to generate depth estimates that can be associated with RGB pixels. Very soon, small, high-quality RGB-D cameras developed for computer gaming and home entertainment ...

متن کامل

RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments

RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system tha...

متن کامل

A Post-Rectification Approach of Depth Images of Kinect v2 for 3D Reconstruction of Indoor Scenes

3D reconstruction of indoor scenes is a hot research topic in computer vision. Reconstructing fast, low-cost, and accurate dense 3D maps of indoor scenes have applications in indoor robot positioning, navigation, and semantic mapping. In other studies, the Microsoft Kinect for Windows v2 (Kinect v2) is utilized to complete this task, however, the accuracy and precision of depth information and ...

متن کامل

Real-time dense appearance-based SLAM for RGB-D sensors

In this work a direct dense approach is proposed for real-time RGB-D localisation and tracking. The direct RDB-D localisation approach is demonstrated on a low cost sensor which exploits projective IR light within indoor environments. This type of device has recently been the object of much interest and one advantage is that it provides dense 3D environment maps in real-time via embedded comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018